B. Sc. B.Ed. SEMESTER I EXAMINATION 2019
 Subject: Physics
 GE1/ GE2 (Mathematical Physics - I)

FULL MARKS: 50
TIME ALLOWED: 2 HOURS

Answer any Ten (10) questions

1. (i) Find $\frac{d y}{d x}$ when $x^{3}+y^{3}=3 a x y$ where a is a constant.
(ii) Determine whether the following equation is exact $\left(4 x^{3}+6 x y+y^{2}\right) \frac{d y}{d x}=-\left(3 x^{2}+2 x y+2\right)$
2. (i) Prove that if $y^{3}-3 a x^{2}+x^{3}=0$ then $\frac{d^{2} y}{d x^{2}}+\frac{2 a^{2} x^{2}}{y^{5}}=0 \quad$ (2 marks)
(ii) Find $\frac{d z}{d t}$ using chain rule if $z=x y^{2}+x^{2} y, x=a t^{2}, y=2 a t \quad$ (3 marks)
3. State and prove Gauss' Divergence theorem.
4. (i) Find the projection of vector $\vec{A}=\hat{i}-2 \hat{j}+\hat{k}$ on the vector $\vec{B}=$ $4 \hat{i}-4 \hat{j}+7 \hat{k}$.
(2 marks)
(ii) Show that $\vec{a} \cdot(\vec{b} \times \vec{c})$ in its absolute value equal to the volume of the parallelepiped of sides a, b and c.
5. For three vectors \vec{a}, \vec{b} and \vec{c} prove that $\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b})$ marks)
6. If $\Phi(x, y, z)=x y^{2} z$ and $\vec{A}=x z \hat{i}-x y^{2} \hat{j}+y z^{2} \hat{k}$ then find $\frac{\partial^{3}}{\partial x^{2} \partial z}(\Phi \vec{A})$ at $(2,0,1)$
7. (i) Define Gradient.
(1 marks)
(ii) What does it mean physically?
(iii) If $\vec{R}=x \hat{i}+y \hat{j}+z \hat{k}$ then find $\boldsymbol{\nabla}\left(\frac{1}{R}\right)$. (3 marks)
8. Prove that
(i) $\boldsymbol{\nabla} \times \boldsymbol{\nabla} \phi=0$
(2 marks)
(ii) $\nabla \cdot \nabla \times \vec{A}=0$ (3 marks)
9. (i) Define a Vector Space.
(ii) What do you mean by the basis of a Vector Space.
(iii Define orthonormal and orthogonal set of vectors.
(2 marks)
10. (i) Define eigenvalues and eigenvectors.
(2 marks)
(ii) Find the eigenvalues of $X=\left(\begin{array}{ccc}-1 & 2 & 2 \\ 2 & 2 & 2 \\ -3 & -6 & -6\end{array}\right)$
11. (i) Justify with reason whether the following equation is homogeneous $\frac{d y}{d x}=\frac{2 x-y}{x-3 y}$
(2 marks)
(ii) Solve the following:

$$
\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0, y(0)=1
$$

(3 marks)
12. Solve the following:
$m \frac{d^{2} x}{d y^{2}}+\alpha \frac{d y}{d x}+\beta x=k \cos (\omega x), y(0)=0$

